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Abstract. The numerical study of he atconduction in composite materials is much ad-

versely a�ected by the geometrical sti�ness arising from their generally complex microstruc-

tures, particularly at high concentrations. With the purpose of alleviating the consequences

of geometrical sti�ness, in this paper we develop bounds for the e�ective conductivity of

unidirectional composites with a thermally{conducting dispersed phase, based on simple

isotr opicmicrosc alemodels. Our approach pr oceedsby an inner{outer de composition, in

which analytical approximations at the microscale ar e folded into modi�ed outer prob-

lems de�ned over ge ometrically more homogeneous domains. Rigorous lower and up-

per bounds for the e�ective conductivity ar e then de�ned based on the solutions of these

outer pr oblems. The bounds ar emotivated physically and proven mathematically, by us-

ing classical variational sp ac erestriction and embedding arguments. The formulation is

applicable to both or dered and random �brous composites, and it is easily extendable to

three{dimensional particulate composites.
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1. INTRODUCTION

Composite materials are engineered to attain a wide range of mechanical and thermal

macroscopic properties, at a low er cost and higher e�ciency as compared to the individual com-

ponents. The determination of macroscopic, or e�ective, properties of composites, in terms of the

microstructure and component properties, is thus of fundamental and practical importance. For

the heat conduction problem in thermal composite materials, many di�erent approaches ha ve

been adopted to determine the e�ective conductivity: statistical microstructure{independent

bound methods (Torquato, 1991), cell{model semi{analytical treatments (Sangani & Yao, 1988;

P errinset al., 1979), phenomenological modelling (Tzou, 1991), computational procedures (Cruz

& P atera,1995; Ghaddar, 1994), and experimental studies (Hasselman et al., 1987; Pilling et

al., 1979). Recent reviews of the subject of heat conduction in composites are presented in Ayers

& Fletcher (1998) and Furma~nski (1997).



An important class of problems of heat conduction in composite materials is the transverse

conduction in �brous composites, in particular the ones composed of monodisperse unidirectional

solid circular �bers distributed in a continuous matrix (Furma~nski, 1997). The positions of the

cylinders, or �bers, may be orderly or randomly distributed in space. For such composites,

rigorous (transverse) e�ective conductivity results for which precise error bounds are known, are

still needed in the practically{relevant range of concentration values (or �ber volume fractions)

corresponding to medium to highly{packed media (Hasselman et al., 1987; Pilling et al., 1979).

The semi{analytical series expansion techniques to calculate the e�ective conductivity of ordered

(Perrins et al., 1979) and random �ber arrays (Sangani & Yao, 1988) have serious convergence

and error control problems when maximum packing is approached, particularly for higher values

of the conductivity of the �bers.

Although better suited than analytical and semi{analytical approaches to treat complex

geometries and nonlinear phenomena, �nite{element based computational procedures (Cruz &

Patera, 1995) su�er from the severe geometric sti�ness which arises when treating the distorted

domains associated with randomly{arranged, medium to highly{packed �bers. The boundaries

of very close �bers form nip regions, or nips, that may be hard, or even impossible, to mesh, ren-

dering numerical solutions either prohibitively expensive, due to excessive degrees{of{freedom

and ill{conditioning, or hopeless. Ghaddar (1994) and Cruz et al. (1995) developed a variational{

bound nip{element methodology to alleviate the problems caused by geometric sti�ness, and

applied the technique to the practically{limited problem of heat conduction in composites with

an insulating dispersed phase. The hybrid analytico{computational methodology is rigorously

applicable to problems for which the e�ective property of interest is the extremum of a quadratic,

symmetric, positive{de�nite functional. The approach proceeds by an inner{outer decomposi-

tion of the geometrically sti� problem, in which analytical approximations in inner nip regions

| the microscale models | are folded into a modi�ed outer problem de�ned over a geometri-

cally more homogeneous domain. As a result, by virtue of the variational nature of the problem,

rigorous upper and lower bounds for the e�ective property may be designed.

In this paper, we extend the variational{bound nip{element technique to solve the problem

of transverse heat conduction in unidirectional composites with a thermally{conducting dispersed

phase; to construct the bounds, we employ simple isotropic microscale models. The composite

medium is periodic, and we assume a perfect thermal contact between the constituent phases.

Our continuous and numerical formulations are applicable to both ordered and random �brous

composites; with the purpose of illustrating the capabilities of our approach, here we compute

the transverse e�ective conductivity for the square array of �bers at high concentrations, includ-

ing maximum packing. Future work shall employ more sophisticated and accurate anisotropic

microscale models (Cruz et al., 1995; Ghaddar, 1994) in a more complete study of heat conduc-

tion in random �brous composites; such study is more relevant to practical applications, and it

necessitates the bounding procedure developed here.

2. HEAT CONDUCTION IN UNIDIRECTIONAL COMPOSITES

WITH A THERMALLY{CONDUCTING DISPERSED PHASE

We consider heat conduction in a unidirectional periodic composite medium, 
, composed

of monodisperse co{oriented circular cylindrical �bers of thermal conductivity kd dispersed in

a continuous matrix of thermal conductivity kc ; we de�ne � � kd=kc , kc > 0. It is assumed

that the components have a perfect thermal contact, and are solid, homogeneous, and isotropic.

The geometric regions occupied by the continuous and dispersed components are, respectively,


c and 
d . An external transverse temperature gradient of magnitude �T=L is imposed over

the macroscale L of 
. The smallest scale of 
 is the diameter of the dispersed �bers, d, called

the microscale. The mesoscale � (d < �� L) is the characteristic size of the periodic cell, 
pc ,

of area �2, which contains N �bers; the concentration is thus given by c = N�d2=4�2.



In Cruz and Patera (1995), a variational hierarchical scale{decoupling procedure for random

media is described, which decomposes the original multiscale problem in 
 into the microscale

(length scale d), mesoscale (length scale �), and macroscale (length scale L) problems. In

the macroscale problem, the e�ective conductivity is used (input) in the energy equation to

calculate the bulk heat 
ow rate through the homogenized medium. In the mesoscale problem,

the e�ective conductivity is determined (output), by solving an appropriate sequence of periodic{

cell problems generated in a Monte{Carlo loop. Finally, in the microscale problem (see section

3), the near�eld behavior of nip{forming �bers is modeled and subsequently incorporated into

the mesoscale problem.

For the purposes of this paper, we are interested in the microscale{prepared mesoscale

cell problem; speci�cally, we want to determine the e�ective conductivity of particular cell

con�gurations, or realizations, of the composite medium which contain one or more pairs of close

�bers forming nip regions. Such con�gurations are more likely to occur at higher concentrations.

We thus need, �rst, the formulation of the transverse heat conduction mesoscale problem in


pc , which is obtained from the original multiscale problem in 
 by applying the method of

homogenization (Cruz, 1997; Furma~nski, 1997). From Cruz (1997), we know that the non{

dimensional weak form of the cell problem for an isotropic composite medium takes the form

(using d and �T (d=L) as the characteristic length and temperature scales, respectively)

Z
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where: � is the mesoscale temperature perturbation, and �c = �j
pc;c and �
d = �j


pc;d

; (y1; y2) =

y are the space coordinates, and dy = dy1dy2 ; 
pc;c and 
pc;d are, respectively, the portions of


pc in the continuous and dispersed components; Y (
pc) = fw 2 H1
#(
pc) jwj
pc;c =w

c; wj

pc;d

=

wd;
R

pc;c

wc dy +
R

pc;d

wd dy = 0g, H1
#(
pc) is the space of all �{doubly periodic functions in


pc for which both the function and derivative are square{integrable over 
pc ; and the external

temperature gradient is (arbitrarily) set in the y1 direction. Problem (1) has been solved in

Cruz (1997) for ordered composites, for various values of the concentration; however, due to the

lack of the microscale preparation, Cruz (1997) was unable to approach maximum packing.

The microscale bounds that we shall here develop, are based on the equivalent variational

form of problem (1), given by

� = arg min
w2Y (
pc)

J
pc
(w) ; (2)

where the functional J
pc
is de�ned by
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!
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Clearly, the weak form (1) for � derives from the �rst variation of the functional J
pc
, which

must be zero at w = �.

Once the mesoscale temperature �eld � of Eq. (1) (or Eq. (2)) has been found for the

particular cell con�guration of the composite medium, the corresponding transverse e�ective

thermal conductivity , ke , can be computed from the expression (Cruz, 1997)

ke =
1

j
pcj

 Z
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�
1�

@�c

@y1

�
dy +

Z
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@�d

@y1

#
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!
; (4)

where, by isotropy, ke is scalar, j
pcj �
R

pc

dy = �2=d2 is the non{dimensional area of the

periodic cell, and ke is non{dimensionalized with respect to kc . Manipulating Eqs. (1){(4),



it can easily be shown that ke satis�es the following minimization principle (Machado, 1999),

which is essential for constructing the microscale bounds presented in the next section:

ke = min
w2Y (
pc)

a
pc
(w) = a
pc

(�) ; (5)

where a�(w) is the quadratic form

a�(w) =
1

j
pcj

0
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dy +

Z
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@
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dy

1
A ; (6)

�c and �d are, respectively, the portions of � � 
pc in the continuous and dispersed components.

3. MICROSCALE VARIATIONAL BOUNDS

In Cruz et al. (1995) and Ghaddar (1994), the microscale component of the macro{meso{

microscale formulation of Cruz & Patera (1995) is described and discussed in detail. Our purpose

here is to formulate isotropic microscale models to avoid the nip regions between close �bers

which preclude mesh generation. In this section we present and apply such nip{region models to

the heat conduction problem in unidirectional composites with a thermally{conducting dispersed

phase; the models lead to lower and upper bounds for the e�ective conductivity ke . The bounds

rely on the minimization property, Eq. (5), of ke . The variational forms of the microscale{

prepared mesoscale problems associated with the lower and upper bounds resemble Eq. (2), and

are respectively de�ned over the modi�ed (`less sti�') domains L and U , as shown below.

3.1. Nips Geometries

The geometries of the nip regions for the lower and upper bounds are shown in Figure 1.

As the concentration increases, it is more likely that one �ber in a cell will get very close to

other �bers in the same cell or in neighboring cells; we postulate that a pair of close �bers forms

a nip when the center{to{center (nondimensional) separation distance 1+ 
 is less than 1+ 
c ,

where 
c is a (small) prescribed parameter. For the lower, Figure 1(a), and upper, Figure 1(b),

bounds, we respectively de�ne: DLB;n and DUB;n are the domains associated with nip region n,

n = 1; : : : ;N , N is the number of nips in the cell; L = 
pcn[
N
n=1DLB;n and U = 
pcn[

N
n=1DUB;n

are the associated modi�ed mesoscale cell domains; and � is half the distance between the edges

of DLB;n or DUB;n parallel to the line joining the �bers centers.

(a) (b)




�

DLB;n ,

isotropic insulator




�

DUB;n ,
isotropic superconductor

Figure 1: (a) Geometry of one lower{bound nip region, DLB;n . (b) Geometry of one

upper{bound nip region, DUB;n .

In the next two subsections, we employ isotropic microscale models to construct rigorous

lower and upper bounds for the e�ective conductivity, kLB � ke � kUB ; based only on solutions

de�ned over L and U , respectively: we avoid the hard{ or impossible{to{mesh nip regions, while

maintaining strict control over the resulting error.



3.2. Lower Bound

A lower bound for ke , kLB , can be obtained by simply assuming that the material in the

nip regions DLB;n , n = 1; : : : ;N , is an isotropic insulator ; thus, since the total available area

for transverse heat 
ow is decreased, we physically expect kLB to be a lower bound. Because

the thermal conductivity is zero inside the nips, the inner problems in [Nn=1DLB;n are irrelevant.

The lower bound kLB will depend on the temperature �eld �LB inside the modi�ed cell domain

L = Lc [
pc;d , Lc = 
pc;c n [
N
n=1DLB;n , which is given by the variational form

�LB = arg min
w2X#;LB(L)

JL(w) ; (7)

where X#;LB(L) = fw 2 H1
#(L) jwjLc =wc; wj
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=wd;
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R
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Eq. (3), we write JL(w) as
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!
: (8)

Therefore, from the �rst variation of JL(w) we derive the weak form for the �eld of the

microscale{prepared mesoscale lower{bound problem: Find �LB 2 X#;LB(L) such that, 8v 2

X#;LB(L),

Z
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@�cLB
@yj

@vc

@yj
dy +

Z
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�
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@yj

@vd

@yj
dy =

Z
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@vc

@y1
dy +

Z

pc;d

�
@vd

@y1
dy : (9)

The main di�erence of problem (9) with respect to the original problem (1) is that Lc in the

former substitutes 
pc;c in the latter. Equation (9) naturally enforces the appropriate Neumann

boundary conditions on �LB at the straight and curved segments of each insulating nip region,

such that the global (macroscopic) heat 
ux is zero at these segments.

In view of the results in the previous section for the e�ective conductivity ke , we now de�ne,

based on the solution �LB of the modi�ed problem (9) in L, the quantity kLB as

kLB � aL(�LB) ; (10)

which is shown below to be a lower bound for ke . From Eqs. (7){(10) and (6), it follows that

(Machado, 1999)

kLB = min
w2X#;LB(L)

aL(w) : (11)

Also, from Eqs. (9){(10) and (6), we can rewrite kLB as

kLB = (1� ~c) + �c �
1

j
pcj

 Z
Lc

@�cLB
@y1

dy +

Z

pc;d

�
@�dLB
@y1

dy

!
; (12)

where ~c is an `e�ective concentration' given by ~c = 1� (1=j
pcj)
R
Lc
dy.

Finally, we now prove mathematically the physically{expected bounding property of kLB ,

by using domain embedding arguments:

kLB = aL(�LB) = min
w2X#;LB(L)

aL(w)

� aL(�jL + s) = aL(�jL) (13)

� a
pc
(�) = ke : (14)

In (13), �jL is the solution to the original mesoscale problem (1) restricted to L, and s 2 IR is

the required shift such that
R
L(�jL + s)dy = 0. The inequality (13) follows from the fact that

(�jL + s) 2 X#;LB(L); the inequality (14) follows from the positive{(semi)de�niteness of the

quadratic form de�ned in Eq. (6), which leads to a positive contribution over 
pc n L.



3.3. Upper Bound

An upper bound for ke , kUB , can be obtained by simply assuming that the material in the

nip regions DUB;n , n = 1; : : : ;N , is an isotropic superconductor ; thus, since the total capacity

for transverse heat 
ow is increased, we physically expect kUB to be an upper bound. Because

the thermal conductivity is in�nite inside the nip regions, the inner problems in [Nn=1DUB;n have

trivial solutions: the nips are isothermal, so that the temperature �eld �UB over the cell domain


pc is constant inside each superconducting nip. The upper bound kUB will depend on �UB ,

whose variational form is

�UB = arg min
w2W#;UB(
pc)

J
pc
(w) ; (15)

where W#;UB(
pc) = fw 2 H1
#(
pc) jwjUc = wc; wj
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= wd; wjDUB;n
= Cn ; n = 1; : : : ;N ;R


pc
w dy = 0g, C n 2 IR part of the solution, and U is the modi�ed cell domain, U = Uc[
pc;d ,

Uc = 
pc;c n [
N
n=1DUB;n ; it is important to note that W#;UB(
pc) � Y (
pc) (function space

restriction). We can express the functional J
pc
(w) as

J
pc
(w) = JU (wjU ) +

NX
n=1

JDUB;n(wjDUB;n
) ; (16)

where wjU and wjDUB;n
are the restrictions of w(y) to U and DUB;n , respectively.

We can now break the problem (15) into N inner (microscale) problems de�ned over the

nip regions,

�UB;infy;Cng = arg min
w2WUB(DUB;n)

JDUB;n(w) ; n = 1; : : : ;N ; (17)

and an outer problem de�ned over U ,

�UB;out = arg min
w2W#;UB(U)

 
JU (w) +

NX
n=1

JDUB;n(�UB;infy;wj@DUB;n
g)

!
; (18)

where: WUB(DUB;n) is the rather trivial set of all functionsw(y) 2 H1(DUB;n) for whichw = Cn ,

Cn 2 IR given (inner: nips are isothermal); W#;UB(U) = fw 2 H1
#(U) jwjUc = wc; wj


pc;d

=

wd; wj@DUB;n
= Cn ; n = 1; : : : ;N ;

R
U w dy = 0g, Cn 2 IR part of the (outer) solution; @DUB;n

is the boundary of nip DUB;n , composed of the two straight edges and two arcs of circle (see

Figure 1(b)); and

�UB;out = �UBjU + s0 ; �UB;infy;�UB;outj@DUB;ng = �UBjDUB;n + s0 ; n = 1; : : : ;N ; (19)

s0 2 IR is a constant shift such that
R

pc

�UB dy = 0 and
R
U �UB;out dy = 0 may be obtained.

The inner problems have trivial solutions in this case, since by assumption �UB;infy;Cng =

Cn , n = 1; : : : ;N . The outer problem thus becomes

�UB;out = arg min
w2W#;UB(U)

JU (w) ; (20)

since JDUB;n(�UB;infy;Cng) = 0, n = 1; : : : ;N . Taking the �rst variation of JU (w), we obtain

the weak form for the �eld of the microscale{prepared mesoscale upper{bound problem: Find

�UB;out 2W#;UB(U) such that, 8v 2W#;UB(U),
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Problem (21) di�ers from the original problem (1) in that Uc and W#;UB(U) in the former

respectively substitute 
pc;c and Y (
pc) in the latter.



In view of the previous results for the e�ective conductivity ke and lower bound kLB , we

now write, based on the solution �UB;out of the modi�ed problem (21) in U , the quantity kUB as

kUB � a
pc
(�UB) = min

w2W#;UB(
pc)
a
pc

(w) ; (22)

which is shown below to be an upper bound for ke . From Eqs. (21){(22) and (6), and the fact

that JDUB;n(�UB;infy;Cng) = 0, n = 1; : : : ;N , kUB can be rewritten as (see details in Machado,

1999)

kUB = 1 + (� � 1)c �
1
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pcj

 Z
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@y1
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Z
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�
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@y1
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!
: (23)

Finally, we now prove mathematically the physically{expected bounding property of kUB ,

by using function space restriction arguments:

kUB = a
pc
(�UB) = min

w2W#;UB(
pc)
a
pc

(w)

� min
w2Y (
pc)

a
pc
(w) = a
pc

(�) = ke ; (24)

where � is the solution to the original mesoscale problem (1). The inequality (24) follows from

the fact that W#;UB(
pc) � Y (
pc).

4. NUMERICAL SOLUTION

Numerical solution of problems (1), (9), and (21) requires three steps: geometry and mesh

generation, �nite element discretization and solution of the resultant linear system of algebraic

equations. Geometry and mesh generation for our thermal composites domains are described in

detail in Cruz & Patera (1995), Cruz (1997), and Machado (1999); in this latter reference, the

meshing of the nips boundaries is further explained. The �nite element discretization procedure

to arrive at the discrete problems for � , �LB and �UB;out is similar to the one described in Cruz

(1997). The main di�erences required for the treatment of the nips boundaries are: for the

lower{bound problem, the appropriate Neumann boundary conditions are naturally enforced;

for the upper{bound problem, the constant temperature conditions are enforced by making all

the �nite{element global nodes on the boundaries of each nip region DUB;n to correspond to

the same temperature degree{of{freedom, Cn , n = 1; : : : ;N . Finally, we choose the well{known

conjugate gradient algorithm (Cruz & Patera, 1995; Machado, 1999), with no preconditioning,

for iterative solution of the discrete problems.

5. RESULTS AND CONCLUSIONS

In this section we present our results for the non{dimensional transverse e�ective conduc-

tivity and associated lower and upper bounds for the square array of �bers; the subscript h is

used to indicate all numerically calculated quantities. For illustrative purposes, Figure 2 shows

two meshes for the square array, generated for c = 0:75: the mesh on the left is for domain 
pc

(N = 0), and the mesh on the right is for both modi�ed domains L and U (N = 2); the meshes

have been purposedly made coarse around the corners of the square to facilitate visualization

(see comment about mesh generation below).

All the results have been brought together in Table 1, where we show: ke , the e�ective

conductivity results of Perrins et al. (1979) for the square array; ke;h , our numerical results for

the e�ective conductivity; kLB;h and kUB;h , respectively the lower and upper bound for ke;h ; ke;h
and Er , respectively the e�ective conductivity estimate based on the bounds and the associated

relative error, given by

ke;h =
1

2
(kLB;h + kUB;h) ; (25)



Figure 2: Illustrative �nite element meshes for the square array, c = 0:75: mesh on the

left is for 
pc (N = 0), and mesh on the right is for both L and U (N = 2).

Er =
(kUB;h � kLB;h)=2

ke;h
� 100 % : (26)

Our numerical results have been obtained using linear triangles; based on previous studies (Cruz

& Patera, 1995; Cruz, 1997), we have chosen mesh parameters and conjugate{gradient tolerances

so as to guarantee that the discretization error and incomplete{iteration error are small relative

to the error associated with the bounds. The results in Table 1 have been grouped in two sets;

for both sets, three values of the ratio of phase conductivities, � 2 f2; 10; 50g, and two values

of the nip width parameter, � 2 f0:04; 0:06g, have been selected. The �rst set of results, in the

top half of Table 1, are obtained for two high concentration values, c 2 f0:75; 0:78g, for which it

is still possible to generate a mesh in 
pc using the procedure described in Cruz (1997). For the

�rst set, the distance 
 between neighboring �bers is large enough to allow for mesh generation

in 
pc (Fig. 2); since 
 has to be smaller than the nip threshold parameter 
c for a pair of �bers

to form a nip, we use the artifact of setting 
c to a high enough value when c 2 f0:75; 0:78g.

The second set of results, in the bottom half of Table 1, are obtained for two high concentration

values, including maximum packing, c 2 f0:785; �=4g, for which it is not possible to generate

a mesh in 
pc using the procedure described in Cruz (1997); note Perrins et al. (1979) do not

provide a value of ke for maximum packing.

We now make several remarks. First, as expected from the mathematical proofs of previous

sections, we note that the hierarchy of the bounds is obtained for all chosen values of �, c and

�: kLB;h < ke;h < kUB;h . Second, the gap � � kUB;h � kLB;h gets smaller (i.e., kLB;h increases

and kUB;h decreases) as � decreases, for all values of c and �; we therefore observe, in both

sets of results, that the relative error Er decreases as � decreases. Third, for the same values

of � and �, the relative error Er decreases as the concentration increases, because the quotient

of the area of L or U and the area of 
pc increases as the concentration increases. Finally, we

note that, for the same values of c and �, the relative error Er increases as the ratio of phase

conductivities � increases; for example, at maximum packing with � = 0:04, we achieve the

relative errors of 0.53%, 4.1%, and 26% for � = 2, � = 10, and � = 50, respectively.

We conclude that we have successfully extended the variational{bound nip{element tech-

nique of Cruz et al. (1995) and Ghaddar (1994) to solve the problem of transverse heat con-

duction in unidirectional composites with a thermally{conducting dispersed phase. We have

provided precise error bounds for the e�ective conductivity at maximum packing for the square

array. Future work shall extend the current implementation to calculate the e�ective conduc-

tivity of random arrays of �bers, which are more relevant to the study of real materials, and,

also, develop anisotropic microscale models to derive sharper bound values for ke , which, from



the above analysis, are clearly needed for higher values of the ratio of phase conductivities.

Table 1: E�ective conductivity results for the square array: semi{analytical, ke , numeri-

cal, ke;h , lower bound, kLB;h , upper bound, kUB;h , conductivity estimate, ke;h , and relative

error, Er . Parameters: c 2 f0:75; 0:78; 0:785; �=4g, � 2 f2; 10; 50g, � 2 f0:04; 0:06g.

c �

2 10 50

� ke ke;h � ke ke;h � ke ke;h

1.6767 1.677 4.9443 4.946 9.5355 9.546

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

0.75 0.06 1.620 1.686 0.06 4.240 5.833 0.06 6.793 23.61

ke;h Er ke;h Er ke;h Er

1.65 2:0% 5.0 16% 15 56%

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

0.04 1.647 1.683 0.04 4.524 5.653 0.04 7.714 21.77

ke;h Er ke;h Er ke;h Er

1.67 1:1% 5.1 11% 15 47%

� ke ke;h � ke ke;h � ke ke;h

1.7154 1.715 5.8037 5.805 16.310 16.32

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

0.78 0.06 1.671 1.719 0.06 4.983 6.126 0.06 9.575 24.66

ke;h Er ke;h Er ke;h Er

1.70 1:4% 5.6 10% 17 44%

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

0.04 1.695 1.717 0.04 5.369 6.004 0.04 11.76 22.96

ke;h Er ke;h Er ke;h Er

1.71 0:64% 5.7 5:6% 17 33%

� ke ke;h � ke ke;h � ke ke;h

1.7220 | 6.004 | 20.5 |

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

0.785 0.06 1.680 1.724 0.06 5.16 6.19 0.06 10.5 24.9

ke;h Er ke;h Er ke;h Er

1.70 1:3% 5.7 9:0% 18 41%

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

0.04 1.704 1.723 0.04 5.59 6.08 0.04 13.5 23.3

ke;h Er ke;h Er ke;h Er

1.713 0:55% 5.8 4:2% 18 27%

� ke ke;h � ke ke;h � ke ke;h

| | | | | |

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

�=4 0.06 1.681 1.725 0.06 5.18 6.19 0.06 10.6 24.9

ke;h Er ke;h Er ke;h Er

1.70 1:3% 5.7 8:9% 18 40%

kLB;h kUB;h kLB;h kUB;h kLB;h kUB;h

0.04 1.705 1.723 0.04 5.61 6.09 0.04 13.7 23.3

ke;h Er ke;h Er ke;h Er

1.714 0:53% 5.9 4:1% 18 26%



Acknowledgements

M. E. C. and L. B. M. would like to gratefully acknowledge the support of the Brazilian Council

for Development of Science and Technology (CNPq) through Grant 521002/97{4, FAPERJ

through Grant E{26/150.654/97, CAPES through the M.Sc. stipend of L.B.M., and the Cray

time provided by NACAD/COPPE/UFRJ.

REFERENCES

Ayers, G. H. & Fletcher L. S., 1998, Review of the Thermal Conductivity of Graphite{Reinforced

Metal Matrix Composites, Journal of Thermophysics and Heat Transfer, vol. 12, pp. 10{

16.

Cruz, M. E., 1997, Two{Dimensional Simulation of Heat Conduction in Ordered Composites

With a Thermally{Conducting Dispersed Phase, Proceedings of the 14th COBEM, Paper

COB288, Bauru, SP, Brazil.

Cruz, M. E., Ghaddar, C. K. & Patera A. T., 1995, A Variational{Bound Nip{Element Method

for Geometrically Sti� Problems; Application to Thermal Composites and Porous Media,

Proc. R. Soc. Lond. A, vol. 448, pp. 1{30.

Cruz, M. E. & Patera, A. T., 1995, A Parallel Monte{Carlo Finite{Element Procedure for the

Analysis of Multicomponent Random Media, Int. J. Numer. Methods Engng., vol. 38,

pp. 1087{1121.

Furma~nski P., 1997, Heat Conduction in Composites: Homogenization and Macroscopic Behav-

ior, Appl. Mech. Rev., vol. 50, pp. 327{356.

Ghaddar, C. K., 1994, Parallel Analytico{Computational Methods for Multicomponent Me-

dia: Application to Thermal Composites and Porous Media Flows, Ph.D. Thesis, Mas-

sachusetts Institute of Technology.

Hasselman, D. P. H., Johnson, L. F., Syed, R., Taylor, M. P. & Chyung K., 1987, Heat

Conduction Characteristics of a Carbon{Fibre{Reinforced Lithia{Alumino{Silicate Glass{

Ceramic, J. Mater. Sci., vol. 22, pp. 701{709.

Machado, L. B., 1999, Calculation of the E�ective Conductivity of Unidirectional Composites,

M.Sc. Thesis (in Portuguese), PEM/COPPE/UFRJ.

Perrins, W. T., McKenzie, D. R. & McPhedran, R. C., 1979, Transport properties of regular

arrays of cylinders, Proc. R. Soc. Lond. A, vol. 369, pp. 207{225.

Pilling, M. W., Yates, B., Black, M. A. & Tattersall P., 1979, The Thermal Conductivity of

Carbon Fibre{Reinforced Composites, J. Mater. Sci., vol. 14, pp. 1326{1338.

Sangani, A. S. & Yao, C., 1988, Transport processes in random arrays of cylinders. I. Thermal

conduction, Phys. Fluids, vol. 31, pp. 2426{2434.

Torquato, S., 1991, Random heterogeneous media: Microstructure and improved bounds on

e�ective properties, Appl. Mech. Rev., vol. 44, pp. 37{76.

Tzou, D. Y., 1991, A Universal Model for the Overall Thermal Conductivity of Porous Media,

J. Comp. Mat., vol. 25, pp. 1064{1084.


